Proof of Factorization forB→Dπ

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of Factorization for Diffractive Hard Scattering

A proof is given that hard-scattering factorization is valid for deep-inelastic processes which are diffractive or which have some other condition imposed on the final state in the target fragmentation region.

متن کامل

A Proof of the Factorization Forest Theorem

We show that for every homomorphism Γ → S where S is a finite semigroup there exists a factorization forest of height ≤ 3 |S|. The proof is based on Green’s relations.

متن کامل

Proof of Factorization for Deeply Virtual Compton Scattering in QCD

We show that factorization holds for the deeply virtual Compton scattering amplitude in QCD, up to power suppressed terms, to all orders in perturbation theory. The theorem applies to the production of off-shell photons as well as real photons. We give a detailed treatment of the situation where one of the two partons joining the parton density to the hard scattering has zero longitudinal momen...

متن کامل

An Analytic Proof of the Matrix Spectral Factorization Theorem

An analytic proof is proposed of Wiener’s theorem on factorization of positive definite matrix-functions.

متن کامل

Proof of the 1-factorization and Hamilton decomposition conjectures

In this paper we prove the following results (via a unified approach) for all sufficiently large n: (i) [1-factorization conjecture] Suppose that n is even and D ≥ 2dn/4e − 1. Then every D-regular graph G on n vertices has a decomposition into perfect matchings. Equivalently, χ′(G) = D. (ii) [Hamilton decomposition conjecture] Suppose that D ≥ bn/2c. Then every D-regular graph G on n vertices h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2001

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.87.201806